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Effects of electron correlations on a two-dimensional quantum spin Hall �QSH� system are studied. We
examine possible phases of a generalized Hubbard model on a bilayer honeycomb lattice with a spin-orbit
coupling and short-range electron-electron repulsions at half filling, based on the slave-rotor mean-field theory.
Besides the conventional QSH phase and a broken-symmetry insulating phase, we find a third phase, a
fractionalized quantum spin Hall phase, where the QSH effect arises for fractionalized spinons which carry
only spin but not charge. Experimental manifestations of the exotic phase and effects of fluctuations beyond the
saddle-point approximation are also discussed.

DOI: 10.1103/PhysRevB.78.125316 PACS number�s�: 73.43.�f, 71.27.�a, 72.25.�b

I. INTRODUCTION

The quantum spin Hall �QSH� phase is a state of matter
which arises due to spin-orbit coupling in time-reversal sym-
metric systems.1,2 It is characterized by a gap in the bulk and
an odd number of Kramers pairs of gapless edge modes
which are protected by a Z2 topological order.1–3 Recently, an
experimental signature for the gapless edge modes has been
observed in HgTe quantum wells.4 Although the QSH state
was proposed in a noninteracting system,1 the gapless edge
modes are stable in the presence of weak time-reversal sym-
metric disorder or many-body interactions,5,6 which suggests
that the topological order in the bulk is also robust against
weak disorder7 and interactions.8–10 If electron correlations
become sufficiently strong, a broken-symmetry insulating
phase can be stabilized. Recently, a possibility of the QSH
effect arising from many-body interactions has also been
studied.11,12

Fractionalized phases are another unconventional state of
matter and arise as a result of electron correlations. In the
absence of spin-orbit coupling, a subtle balance between the
kinetic energy of electrons and electron-electron interactions
can stabilize spin liquid phases where spins remain disor-
dered due to quantum fluctuations while charge excitations
are gapped.13,14 Spin liquids exhibit fractionalization in that
the low energy excitations are spinons which carry only spin
but not charge. Much attention has been paid to two-
dimensional frustrated magnets which are candidates for spin
liquid states.15

Since either spin-orbit couplings or electron correlations
can lead to an interesting phase, what happens when both of
these interactions are important? We address this question by
examining the possibility of a new phase of matter arising
due to an interplay between the spin-orbit coupling and elec-
tron correlations. A fractional QSH state which corresponds
to a time-reversal symmetric version of the fractional quan-
tum Hall state has been suggested as a possible phase for
interacting systems with spin-orbit coupling.2 In this paper,
we explore an alternative possibility where the QSH effect
arises simultaneously with fractionalization in a spin liquid
state. The honeycomb lattice is an ideal geometry to study
such effects because it may support both the QSH phase1 and
the spin liquid phase.16,17

II. MODEL

We consider a generalized Hubbard model defined on a
double layer of honeycomb lattice

H = − �
�i,j�
a,�

�tija�cia�
† cja� + H.c.� + U�

i,a
�nia − 1�2

+ U��
i

�ni1 − 1��ni2 − 1� − �
ia

�a�nia − 1� , �1�

where cia�
† is the creation operator for an electron of spin �

= �1 on site i of layer a=1 or 2 and nia is the number
operator. U �U�� is the on-site �interlayer� Coulomb repul-
sion and �a is the chemical potential which is tuned so that
each layer is at half filling. The intralayer tunneling ampli-
tudes are tija�= t when �i , j� are nearest-neighbor �NN� sites
and tija�=�a1t�ei�ij� for next-nearest-neighbor �NNN� sites.
We assume that there is no spin-orbit coupling or NNN hop-
ping in the second layer and no interlayer tunneling. The
spin-dependent phase �ij�, which we take to be positive
�negative� if an electron with spin up �down� hops around the
lattice in a counterclockwise sense, is due to spin-orbit
coupling.1 We emphasize that our model is an idealized
model and the goal of our investigation is to demonstrate the
possibility of finding a new state of matter from a simple
model which contains both spin-orbit coupling and electron
correlations.

We now represent the Hamiltonian in the slave-rotor
representation18 cia�=e−i�iaf ia�, where the spinon operator
f ia� carries only spin and the chargon operator ei�ia carries
only charge. The enlarged Hilbert space is constrained by
Lia=��f ia�

† f ia�−1, where Lia=nia−1 represents the charge
quantum number, conjugate to �ia. Integrating out Lia �see
Appendix A�, we obtain the partition function, Z
=�Df�DfD�Dhe−�d	L, where the Euclidean Lagrangian is
given by

PHYSICAL REVIEW B 78, 125316 �2008�

1098-0121/2008/78�12�/125316�6� ©2008 The American Physical Society125316-1

http://dx.doi.org/10.1103/PhysRevB.78.125316


L = �
i,a
�

f ia�
� �	f ia� + �

i,a
�ihia − �a���

�

f ia�
� f ia� − 1�

− �
�i,j�
a,�

�tija�f ia�
� f ja�ei��ia−�ja� + H.c.�

+
1

U+
�

i

��	�i+ + hi+�2 +
1

U−
�

i

��	�i− + hi−�2. �2�

Here U��2U�U� and A���A1�A2� /2 for Aa=�ia or hia,
where hia is a Lagrange multiplier field enforcing the con-
straint. In this paper, we concentrate on the parameter region
U−
U+ , t, in which case the phase stiffness for the �i− field
is large and the phases of the antisymmetric chargon field in
the two layers are locked together. If �i− is condensed, both
�i− and hi− are gapped due to the Higgs mechanism. At low
energies, we can set the chargon fields and the Lagrange
multipliers in the two layers equal to each other and our
model reduces to a model with one chargon field �i and one
Lagrange multiplier hi. When U−=0, this effective model for
the single chargon becomes exact �see Appendix B�.

We now decouple the quartic terms in the hopping sector
by a Hubbard-Stratonovich transformation to obtain the ef-
fective Lagrangian

L = �
�i,j	

t
�ij
f�

�ij
X + H.c.� + �

��i,j		
t�
�ij

f��

�ij
X� + H.c.�

+ �
i,a

�a + �
i

��̄i + 2h̄i� + �
i,a,�

f ia�
� ��	 − h̄ia − �a�f ia�

− �
�i,j�
a,�

t
�ij
X f ia�

� f ja� + H.c.�

− �
��i,j		

�

t�
�ij
X�ei�ij�f i1�

� f j1� + H.c.�

+
1

U+
�

i

��	 + h̄i�Xi
���	 − h̄i�Xi − �

�i,j	
t
�ij

f Xi
�Xj + H.c.�

− �
��i,j		

t�
�ij
f�Xi

�Xj + H . c.� − �
i

�̄i�Xi�2. �3�

Here a soft boson field Xi�e−i�i has been introduced with a
Lagrange multiplier �i which imposes the constraint �Xi�=1.

�̄i=−i�i and h̄i=−ihi are the saddle-point values of the
Lagrange multipliers and lie on the imaginary axis.16 �ij

f and

�ij
X ��ij

f� and �ij
X�� are the NN �NNN� hopping order param-

eters of spinon and chargon, respectively.

III. MEAN-FIELD PHASE DIAGRAM

In the small U limit, the system essentially reduces to a
noninteracting model with no coupling between the layers. In
this limit, the conventional QSH phase will be realized in the
first layer where there is spin-orbit coupling. In the second
layer, the semimetal �SM� phase with gapless Dirac fermions
will be obtained.

When U t , t�, the Coulomb interactions are dominant
and the low energy states of the system are described by the

configurations which satisfy �ania=2. To second order in t
and t�, the low energy effective Hamiltonian is obtained to be

Heff =
t2

U
�
�i,j	

tr
QiQ j� +
t�2

U
�

��i,j		
tr
e−i�ij�

3Tie
i�ij�

3T j� , �4�

where 
Qi�a�,b��=cia�
† cib�� is the 4�4 matrix of U�4� gen-

erators and 
Ti��,��=ci1�
† ci1�� is the 2�2 matrix of U�2� gen-

erators which are restricted to the first layer. The first term
has a U�4�=U�1� � SU�4� symmetry where the U�1� is asso-
ciated with conservation of the total charge and the SU�4�
with conservation of the flavor quantum number given by the
layer index and the spin. The six states which satisfy the
constraint �ania=2 at each site form the rank 2 antisymmet-
ric representation of the SU�4� group. The second term
breaks the U�4� symmetry into SU�2� � U�1�3 where the un-
broken SU�2� symmetry is the spin-rotational symmetry in
the second layer and the three U�1� symmetries are associ-
ated with charge conservation in each layer and Sz conserva-
tion in the first layer. If t�=0, each NN bond tends to form an
SU�4� singlet and a valence bond solid �VBS� phase which
breaks translational symmetry is a good candidate for the
ground state.20 The most natural pattern among possible VBS
states in the honeycomb lattice is the dimerized phase where
valence bonds are stronger for the bonds which are directed
along one of the six symmetry directions.16 A nonzero t� will
enhance quantum fluctuations, but we expect that the fully
gapped dimerized state will remain stable for a finite range of
t�� t.

With the guidance of these insights, the mean-field theory
is carried out for the uniform and dimer ansatze. We solve a
system of self-consistent equations at T=0 for the link order
parameters, chemical potentials, and Lagrange multipliers by
requiring that the energy remains stationary with respect to
variations of those variables. We then find the mean-field
phase diagram by choosing the lower energy configuration
between the dimer and uniform ansatze. In particular, we are
interested in finding a new phase in the insulating side of the
phase diagram where both the spin-orbit coupling and the
electron correlation are important. Although we could start
from an effective “spin” model to study such insulating
phases, we will use the full action in Eq. �3� which is appli-
cable in all parameter regimes. It would be of interest to
study the possibility of obtaining an exotic phase in an ef-
fective model such as Eq. �4�, possibly with additions of
higher order ring-exchange terms.

For large U, we find that the dimerized configuration has
lower energy, while for small U the uniform configuration
has lower energy, as expected. There is a first-order phase
transition between these two phases. Within the uniform
phase, an onset of the chargon condensation marks another
phase transition. Although not shown here, the chargon gap
vanishes continuously as U decreases and the phase transi-
tion is a second-order phase transition. The Bose condensa-
tion amplitude is given by Z= ��X	�2. If the chargons are con-
densed, a spinon recombines with a chargon to become an
electron. This phase is the conventional weakly interacting
phase where the electrons form the QSH phase in the first
layer while the semimetal phase with Dirac nodes is realized
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in the second layer. For t� / t�0.2, the first-order phase tran-
sition from the uniform phase to the dimerized phase occurs
before the Bose condensation amplitude Z in the uniform
phase becomes zero as U / t increases so that there is no in-
termediate phase between the conventional QSH/SM phase
and the dimerized phase. On the other hand, for t� / t�0.2, a
window opens up for an intermediate phase and the region of
stability for the intermediate phase grows as t� is increased.
The mean-field phase diagram is shown in Fig. 1.

The intermediate phase is characterized by the uniform
link order parameters but, unlike the QSH/SM phase, the
chargons remain gapped, which makes it an insulating phase.
This is a phase where the fractionalized spinon arises as a
low energy excitation. In the first layer, the spinon is gapped
in the bulk due to the spin-dependent phase in the spinon
hopping which has been inherited from the spin-orbit cou-
pling of electrons as is shown in the seventh term of Eq. �3�.
At the mean-field level, which ignores the fluctuations of the
order parameters, the spinon spectrum is essentially the same
as the electron spectrum in the Kane and Mele model.1 The
nontrivial topological structure in the spectrum guarantees
that there exist gapless edge modes in the first layer. There-
fore, we have a fractionalized quantum spin Hall �FQSH�
phase in which the gapless edge states are carried by spinons
and not by electrons as in the conventional QSH phase. It
is noted that the gapless edge mode and the FQSH state may
be robust even though Sz symmetry is broken in the first
layer as will be discussed in Sec. IV. In the second layer, the
spins form an algebraic spin liquid �SL�,21 whose low energy
excitations are described by four two-component Dirac
spinons.

The electromagnetic response and transport properties of
the FQSH phase are very different from those of the usual
QSH phase, as discussed below in Sec. V. It was recently

pointed out that the conventional QSH state can have spin-
charge separated excitations in the presence of � flux even in
the absence of many-body interactions.9 We emphasize that
the spinon which arises in the FQSH phase is different in that
they are intrinsic excitations resulting from many-body cor-
relations while the fractionalized excitations obtained in the
noninteracting systems are generated by an external frac-
tional magnetic-flux quantum. The QSH effect in the pres-
ence of a Z2 gauge field was recently studied where the
dynamic fluxon makes the fractionalized excitation a propa-
gating mode.10

IV. STABILITY OF THE EDGE MODES

Beyond the mean-field approximation, the most important
fluctuations are the phase fluctuations of the hopping order
parameters. The phase mode is described by a gauge field
because it restores the gauge invariance associated with the
local phase transformation f ia�→ei�i f ia� and �i→�i+�i. The
low energy effective theory in the FQSH/SL phase is given
by

S = �
n,�
 d	dx1dx2�̄n��i��D���n�

+
1

g2 d	dx1dx2f��f�� + d	dx1�̄�i�aDa�� . �5�

Here �n� is the 2+1D massless Dirac fermion in the second
layer, � labels spin, and n=1,2 is the index for the nodal
points. D�=��− ia� is the covariant derivative, a� is the in-
ternal gauge field, and f�� is the field strength tensor with
�=0,1 ,2. � is the 1+1D Dirac fermion on the edge of the
first layer with a=0,1. The edge is assumed to be along the
x1 direction. Although the gauge field is a compact U�1�
gauge field, the compactness is unimportant at low energies
when Sz is conserved22 or a large number of gapless Dirac
fermions are coupled with the gauge field.23 In our case,
there are N=4 gapless Dirac fermions coming from the sec-
ond layer. In the following, we proceed with the assumption
that the four gapless Dirac fermions are enough to stabilize
the fractionalized phase against proliferation of instantons. It
is noted that the stability of the FQSH state relies on the
existence of both layers. The spin-dependent NNN hopping
in the first layer opens up the gap of the spinon in the first
layer which provides the robustness of the edge modes. The
presence of the second layer is crucial in that the gapless
spinons screen the gauge field and suppress the gauge fluc-
tuations.

The U�1� gauge field is coupled to the spinons in both
layers. The spinons are gapped in the bulk of the first layer
but there are gapless edge modes. Although the existence of
the gapless modes has been inferred from the mean-field
band structure which has a nontrivial topological order, the
stability of those edge modes is less clear in this case be-
cause they are coupled to the gapless gauge field. The key
question is whether the fluctuating gauge field destabilizes
the topological order associated with the spinon band to open
up a gap for the edge modes. In order to address this ques-
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FQSH/SLQSH/SM
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FIG. 1. Phase diagram in the space of t� / t and U / t in a 40
�40 lattice with U−=0. The weakly interacting phase �small U� has
Z�0 and the first layer forms the conventional QSH phase while
the second layer is in the semimetal �SM� phase with gapless Dirac
nodes. The intermediate region has the fractionalized quantum spin
Hall �FQSH� phase with Z=0 where chargeless spinons form the
QSH phase in the first layer and the gapless spin liquid �SL� phase
in the second layer. In both QSH/SM and FQSH/SL phases, the NN
and NNN hopping order parameters are nonzero and site indepen-
dent. The large U region is a dimerized phase where Z=0 and the
hopping order parameters along the bold lines have the maximum
amplitude and all other bonds have zero amplitude. The solid line
represents the second-order transition and the dotted line the first-
order transition.
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tion, one can integrate out the bulk degrees of freedom in Eq.
�5� to obtain an effective action at the edge. The resulting
theory is an 1+1D quantum electrodynamics �QED� with a
nonlocal action for the gauge field. Whatever this nonlocal
action is, in the 1+1D QED the quantum fluctuations of the
gapless fermions open up a gap for the gauge field.24 This
suppresses the fluctuations of the gauge field at the edge
although the gauge field remains gapless in the bulk.

One may worry about the possibility of direct spin-spin
interactions between the two layers destabilizing the edge
modes. To examine the stability of the edge modes, one has
to consider all the gapless modes in the low energy theory

Eq. �5��. Since there is no tunneling between the two layers,
the lowest-order interlayer interactions that one can add are
two-body terms of the form

V d	dx1�̄�	,x1,x2 = 0���	,x1,x2 = 0��̄�	,x1���	,x1� .

�6�

Since the edge modes in the first layer can only interact
locally with the bulk modes in the second layer the integra-
tion measure only has one spatial and one temporal compo-
nent. Neglecting gauge fluctuations and forward scatterings
of the edge modes, the free low energy theory is invariant
under a scale transformation �	 ,x1 ,x2�=b�	� ,x1� ,x2��, �
=b−1��, and �=b−1/2�� with b�1. The interlayer interaction
scales as V�=b−1V. If we include gauge fluctuations and for-
ward scatterings of the edge modes, the edge mode is de-
scribed by the Luttinger liquid with a nontrivial Luttinger
parameter K�1 and the spinons in the second layer are de-
scribed by the algebraic spin liquid. As a result, the scaling
dimension of the interlayer coupling will receive loop cor-
rections which are of the order of 
V�=−1+O�1 /N�+O�K
−1�. Given that N=4, the interlayer coupling may remain
irrelevant if the forward scattering is sufficiently weak. If the
interlayer coupling is irrelevant, the edge modes are stable.

V. PHYSICAL PROPERTIES AND DISCUSSION

Now we discuss physical manifestations of the FQSH
state. The longitudinal transport properties along the edge are
very different from those of QSH states or trivial insulators.
There will be a metallic thermal conductivity along the edge
due to the gapless edge mode. However, there will be no
charge conductivity because the spinon is charge neutral,
which is the signature of the spin-charge separation.

The most stark difference from the conventional QSH
state lies in the transverse spin transport induced by an ex-
ternal electromagnetic �EM� field. We put the system on a
cylinder with two edges at the ends of the cylinder. In the
usual QSH state with Sz conservation, upon threading a
magnetic-flux quantum through the halo of the cylinder, a
spin-up electron is transported from one edge to the other
while a spin-down electron is transported in the opposite
direction. This results in a transport of net spin S=1 from
one edge to the other. This is illustrated in Fig. 2�a�. On the
other hand, in the FQSH phase, the edge modes are neutral
spinons which are not directly coupled to the external EM

field and there will be no such transverse spin transport. Al-
though spinons are indirectly coupled to external EM fields
through chargons, which are coupled to both the external and
internal gauge fields, the weak coupling cannot produce a
nonzero spin Hall transport because of a nontrivial quantum
order associated with the fractionalization. In the fractional-
ized phase, the tunneling rate of the internal gauge flux from
one value to another value is exponentially suppressed with
increasing system size and the flux through the cylinder is
precisely conserved at T=0 in the thermodynamic limit. The
internal gauge flux remains strictly at zero under the adia-
batic insertion of the flux. Therefore, the external flux does
not induce any transverse spin transport, as is illustrated in
Fig. 2�b�, in sharp contrast to the QSH state. This insensitiv-
ity of the edge modes to EM fields can potentially be useful
in stabilizing the edge modes in an environment with fluctu-
ating EM fields which induce back scatterings between the
edge modes in QSH states.

In summary, we proposed and studied a simple model
which has both spin-orbit coupling and many-body interac-
tions. We found a region of the mean-field phase diagram
where a fractionalized quantum spin Hall state is stable and
argued that this state may survive the effects of fluctuations
under certain conditions. In the FQSH state, charge neutral
spinons form gapless edge modes which carry only spin,
unlike the conventional QSH state where the edge modes
carry both charge and spin. Due to the charge neutral edge
modes, the FQSH state shows a set of unique transport prop-
erties and electromagnetic responses which are distinct from
conventional states.
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APPENDIX A: DERIVATION OF THE BOSON ACTION
IN EQ. (2)

Since the constraint Lia=nia−1 is diagonal in site indices,
calculating its partition function can be reduced to calculat-
ing one site matrix elements of the form

FIG. 2. �Color online� �a� Transverse spin response to an applied
external magnetic field in the conventional quantum spin Hall
phase. Upon threading a magnetic-flux quantum, a spin up propa-
gates from one edge 1, say, to edge 2 and a spin down propagates
from edge 2 to edge 1. �b� The response in the fractionalized quan-
tum spin Hall phase. The external flux does not generate any trans-
verse spin transport because the edge modes are charge neutral
spinons.
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Zi� = ��1��2��e
−�HL��1�2	 , �A1�

where 1 and 2 refer to the layer index. Here HL=U�L1
2

+L2
2�+U�L1L2− i�h1L1+h2L2�. The one site partition function

becomes

Zi� = �
l1,l2

eil1��1�−�1�+il2��2�−�2�−�
U�l1
2+l2

2�+U�l1l2−i�h1l1+h2l2��,

�A2�

where we have omitted the site dependence of the eigenval-
ues to simplify the forthcoming formulas.

To obtain the effective action of the �ia variables we must
sum over all lia. We do this by making a change of variables
from the discrete lia to a new set of “continuous” variables
pa=�la. After implementing these changes we then change
variables from the original p1 and p2 to new symmetric and
antisymmetric variables

p� �
1

2
�p1 � p2� , �A3�

which allow us to write the one site partition function as two
decoupled Gaussian integrals

Zi� =
1

2�2 dp+dp−

� e2ip+
�̇++h+�+2ip−
�̇−+h−�−1/�
�2U+U��p+
2+�2U−U��p−

2�,

�A4�

where we have rewritten all fields as symmetric and antisym-
metric combinations of the original layer dependent fields

and �̇�= ���� −��� /�. Defining new coupling constants as
U�=2U�U�, we obtain

Zi� =
1

2�2���

U+
���

U−
e−�/U+��̇+ + h+�2

e−�/U−��̇− + h−�2
.

�A5�

The full partition function for the � variables is obtained by
taking a product over all lattice sites of the single site result

above. This gives the last two terms in Eq. �2�.

APPENDIX B: EXACTNESS OF ONE-BOSON THEORY
WHEN U�=2U

In Sec. II we argued that in the region U��2U our model
reduces to the one-boson model through the Higgs mecha-
nism. Here we show that the one-boson model becomes ex-
act when U�=2U. For U�=2U, we can write Hamiltonian �1�
as

H = − �
�i,j�
a,�

�tija�cia�
† cja� + H.c.�

+ U��
�=1

4

ci�
† ci� − 2�2

− �
ia

�a�nia − 1� , �B1�

where we have introduced an SU�4� index �=1, ... ,4 defined
as 1= �1↑�, 2= �1↓�, 3= �2↑�, and 4= �2↓�; the first letter in
the parentheses is the layer index and the arrows represent
the eigenvalue of Sz. The Coulomb term is now an SU�4�
symmetric interaction term.

We can now decompose the electron operator into a
spinon part and a chargon part as ci�= f i�e−i�i, where the
SU�4� quantum number is carried by the spinon. With this
decomposition we obtain the slave-rotor representation for
an SU�4� model19

H = − �
�i,j�
a,�

�tij�f i�
† f j�ei��i−�j� + H.c.� + U�

i

Li
2

+ i�
i

hi��
�

f i�
† f i� − Li − 2� − �

i,�
�̃�� f i�

† f i� −
1

2
� .

�B2�

Here hi is the Lagrange multiplier which imposes the con-
straint Li=��f i�

† f i�−2 with Li being the conjugate variable to
�i. We have defined a new chemical potential �̃�=�1 if
�=1,2 and �̃�=�2 if �=3,4. If we apply the similar
Hubbard-Stratonovich transformation to this Hamiltonian we
would reproduce the effective action in Eq. �3�.
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